May 20, 2009

	Points Earned	Points Possible
Part 1		30
multiple choice		
Page 2		24
Page 3		26
Page 4		20
Total		100
Total		100

All work must be shown to receive credit. Show all answers to the proper number of significant figures.

$$N_A = 6.022 \times 10^{23} / \text{mol}$$

 $K = {}^{\circ}\text{C} + 273.16$
 $0{}^{\circ}\text{C} = 273.16 \text{ K}$

Grossmont College Periodic Table

									4.0 .45.0								
IA																VIIA	NOBLE GASES
1 H	IIA															1 H	2 He
1.008		•										IIIA	IVA	VA	VIA	1.008	4.002
3	4											5	6	7	8	9	10
Li	Be											В	С	N	0	F	Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na	Mg	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	IIB	Al	Si	P	S	CI	Ar
23.00	24.30		1	1	ı	1		Г	1	1	1	27.00	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.70	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	ln .	Sn	Sb	Те	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(99)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110								
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	??								
(223)	226.0	227.0	(261)	(262)	(263)	(262)	(265)	(266)	(269)								

Lanthanide series

Actinide series

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.1	140.9	144.2	(147)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.0	231.0	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Part 1 – Multiple Choice (30 points)

1.	At whi	ch pressure would nitrogen gas be most solub	le?	
	a.	1.0 atm	d.	2.0 atm
	b.	2.5 atm	e.	Unable to determine
	C.	1.5 atm		
2.	Which	is the hydroxide ion?		
	a.	H ⁺¹	d.	OH_2^{-1}
	b.	H ₃ O ⁺¹	e.	H₂OOH
	C.	OH ⁻¹		
3.	What	is the conjugate base of HS ⁻¹ ?		
	a.	H ⁺¹	d.	H ₂ S
	b.	OH ⁻¹	e.	S ⁻²
	C.	HS ⁺¹		
4.	All nuc	clides of which element must be radioactive?		
	a.	Strontium	d.	Sulfur
	b.	Plutonium	e.	Carbon
	C.	Arsenic		
5.	An alp	ha particle consists of		
	a.	One proton and one neutron	d.	Two protons and two neutrons
	b.	One proton and two neutrons	e.	Two protons and fourneutrons
	C.	Two protons and one neutron		
6.	In whi	ch type of reaction do the nuclei of two light e	lemer	nts unite to form a heavier
	nucleu	ıs?		
	a.	Fusion	d.	Beta decay
	b.	Fission	e.	Electron capture
	C.	Alpha decay		
7.	How n	nany neutrons are in the nucleus of cobalt-60?	•	
	a.	29	d.	33
	b.	31	e.	60
	C.	27		
8.	Which	hydrocarbon series contains a triple covalent	bond	between carbon atoms?
	a.	Alkatrienes	d.	Alkanes
	b.	Alkines	e.	Alkenes
	C.	Alkynes		

- 9. Two or more different compounds with the same molecular formula are
 - a. Isotopes
 - b. Hypermeres
 - c. Isomers

- d. Hypertopes
- e. Mollimers

- 10. CH₃CH=CHCH₂CH₃ is
 - a. Pentane
 - b. 2-pentene
 - c. Pentyne

- d. 3-pentene
- e. Pen-2-ene

11. Which is a carboxylic acid?

a.

b.

c. H-C-O-F

d.

12. Which is an alcohol?

a.

b.

c.

d.

- 13. The simplest carbohydrates are
 - a. Peptides
 - b. Dipeptides
 - c. Monosaccharides

- d. Disaccharides
- e. Potatoes
- 14. What are the primary constituents of proteins?
 - a. Proteases
 - b. Rabbits
 - c. Nucleic acids

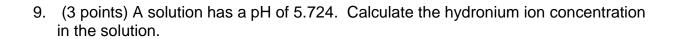
- d. Monosaccharides
- e. Amino acids

- 15. Fats and oils are
 - a. Carbohydrates
 - b. Lipids
 - c. Nucleic acids

- d. Proteins
- e. Hydrocarbons

Part 2 - Problems and Questions (70 points)

- 1. (4 points) Give the proper IUPAC names for the following acids
 - a. H₂SO₄
 - b. HCl
- 2. (8 points) Determine the type of emissions (alpha, beta, or gamma) that occurred in each of the following transitions.


$$^{234}_{90}Th \rightarrow _{----} + ^{230}_{88}Ra$$

$$^{230}_{88}Ra \rightarrow ^{230}_{88}Ra +$$

3. (6 points) Strontium-90 has a half-life of 28 years. If a 4.00 mg sample was stored for 168 years, what mass of Sr-90 would remain?

4. (6 points) A solution is prepared by dissolving 31.6 grams of KOH in 386.0 grams of water Calculate the mass percent potassium hydroxide in a solution.

5.	(6 points) Calculate the number of grams of calcium chloride in 53.6 mL of a 0.4288 M solution CaCl_2 .
6.	(6 points) 26.5 ml of 0.643 M $H_2C_2O_4$ is diluted to 150.0 ml. What is the molarity of the resulting solution?
7.	(8 points) A 14.7% solution of potassium phosphate (K ₃ PO ₄) has a density of 1.39 g/mL. Calculate the molarity of the solution.
8.	(6 points) A solution has an H_3O^+ concentration of 8.53 x 10^{-7} M. a. Determine the pH of the solution.
	b. Determine the pOH of the solution.

10. (8 points) A 25.00 ml sample of vinegar was titrated with 43.46 ml of 0.3155 M NaOH. Calculate the molarity of acetic acid in the vinegar sample.

$$HC_2H_3O_2 + NaOH \longrightarrow NaC_2H_3O_2 + H_2O$$

11. (3 points) Give the IUPAC name of

12. (3 points) Draw a condensed structural formula for 3-ethyl heptane.

13. (3 points) Explain how a saturated fat differs from an unsaturated fat in terms of its chemical structure.